Представление рациональных чисел
Представление рациональных чисел
— Чему равна лошадиная сила? — Это сила лошади весом один килограмм и ростом один метр —Да где же вы видели такую лошадь? — А ее вообще мало кто видел. Она хранится под аргоновый колпаком в Палате мер и весов под Парижем. |
Представить произвольное вещественное число при помощи конечного числа элементов, способных принимать лишь ограниченный набор значений (а именно таковы все цифровые представления данных), разумеется, невозможно. Максимум, что можно сделать — это найти то или иное рациональное приближение для такого числа, и оперировать им.
Примечание
Примечание
На самом деле, возможно точное, а не приближенное представление вещественных чисел рациональными — не одиночной дробью, а сходящейся бесконечной последовательностью дробей, так называемое Гильбертово сечение. Конечным представлением служит не сама последовательность, а правило ее формирования. Из-за своей сложности такое представление крайне редко используется в вычислительных системах и никогда не реализуется аппаратно.
Два основных представления рациональных чисел, используемых в компьютерах, — это представления с фиксированной и плавающей точкой. Интерпретирующие системы (например, MathCAD) иногда реализуют и собственно рациональные числа, представляемые в виде целых числителя и знаменателя, но процессоры, умеющие работать с такими числами на уровне системы команд, автору неизвестны.
Представление с фиксированной точкой (Рисунок 1.3) концептуально самое простое: мы берем обычное двоичное число и объявляем, что определенное количество его младших разрядов представляет собой дробную часть в позиционной записи. Сложение и вычитание таких .чисел может выполняться при помощи обычных целочисленных команд, а вот после умножения и перед делением нам надо, так или иначе, передвинуть двоичную запятую на место.