Протоколы Internet

         

Коррекция ошибок


2.8 Коррекция ошибок

Семенов Ю.А. (ГНЦ ИТЭФ)

Исправлять ошибки труднее, чем их детектировать или предотвращать. Процедура коррекции ошибок предполагает два совмещенные процесса: обнаружение ошибки и определение места (идентификация сообщения и позиции в сообщении). После решения этих двух задач, исправление тривиально – надо инвертировать значение ошибочного бита. В наземных каналах связи, где вероятность ошибки невелика, обычно используется метод детектирования ошибок и повторной пересылки фрагмента, содержащего дефект. Для спутниковых каналов с типичными для них большими задержками системы коррекции ошибок становятся привлекательными. Здесь используют коды Хэмминга или коды свертки.

Код Хэмминга представляет собой блочный код, который позволяет выявить и исправить ошибочно переданный бит в пределах переданного блока. Обычно код Хэмминга характеризуется двумя целыми числами, например, (11,7) используемый при передаче 7-битных ASCII-кодов. Такая запись говорит, что при передаче 7-битного кода используется 4 контрольных бита (7+4=11). При этом предполагается, что имела место ошибка в одном бите и что ошибка в двух или более битах существенно менее вероятна. С учетом этого исправление ошибки осуществляется с определенной вероятностью. Например, пусть возможны следующие правильные коды (все они, кроме первого и последнего, отстоят друг от друга на расстояние 4):

00000000

11110000

00001111

11111111

При получении кода 00000111 не трудно предположить, что правильное значение полученного кода равно 00001111. Другие коды отстоят от полученного на большее расстояние Хэмминга.

Рассмотрим пример передачи кода буквы s = 0x073 = 1110011 с использованием кода Хэмминга (11,7).

Позиция бита: 11 10 9 8

7 6 5 4 3 2 1 Значение бита: 1 1 1 * 0 0 1 * 1 * *

Символами * помечены четыре позиции, где должны размещаться контрольные биты. Эти позиции определяются целой степенью 2 (1, 2, 4, 8 и т.д.). Контрольная сумма формируется путем выполнения операции XOR (исключающее ИЛИ) над кодами позиций ненулевых битов. В данном случае это 11, 10, 9, 5 и 3. Вычислим контрольную сумму:

11 = 1011
10 = 1010
09 = 1001
05 = 0101
03 = 0011
s = 1110
<
/p> Таким образом, приемник получит код:

Позиция бита: 11 10 9 8 7 6 5 4 3 2 1
Значение бита: 1 1 1 1 0 0 1 1 1 1 0
Просуммируем снова коды позиций ненулевых битов и получим нуль.

11 = 1011
10 = 1010
09 = 1001
08 = 1000
05 = 0101
04 = 0100
03 = 0011
02 = 0010
s = 0000
Ну а теперь рассмотрим два случая ошибок в одном из битов посылки, например, в бите 7 (1 вместо 0) и в бите 5 (0 вместо 1). Просуммируем коды позиций ненулевых бит еще раз.

11 = 1011
10 = 1010
09 = 1001
08 = 1000
07 = 0111
05 = 0101
04 = 0100
03 = 0011
02 = 0010
s = 0111
 
11 = 1011 10 = 1010 09 = 1001 08 = 1000 04 = 0100 03 = 0011 02 = 0010 s = 0101 В обоих случаях контрольная сумма равна позиции бита, переданного с ошибкой. Теперь для исправления ошибки достаточно инвертировать бит, номер которого указан в контрольной сумме. Понятно, что если ошибка произойдет при передаче более чем одного бита, код Хэмминга при данной избыточности окажется бесполезен.

В общем случае код имеет N=M+C бит и предполагается, что не более чем один бит в коде может иметь ошибку. Тогда возможно N+1 состояние кода (правильное состояние и n ошибочных). Пусть М=4, а N=7, тогда слово-сообщение будет иметь вид: M4, M3, M2, C3, M1, C2, C1. Теперь попытаемся вычислить значения С1, С2, С3. Для этого используются уравнения, где все операции представляют собой сложение по модулю 2:

С1 = М1 + М2 + М4

С2 = М1 + М3 + М4

С3 = М2 + М3 + М4

Для определения того, доставлено ли сообщение без ошибок, вычисляем следующие выражения (сложение по модулю 2):

С11 = С1 + М4 + М2 + М1

С12 = С2 + М4 + М3 + М1

С13 = С3 + М4 + М3 + М2

Результат вычисления интерпретируется следующим образом.

С11 С12 С13 Значение
1 2 4 Позиция бит
0 0 0 Ошибок нет
0 0 1 Бит С3 не верен
0 1 0 Бит С2 не верен
0 1 1 Бит М3 не верен>
1 0 0 Бит С1 не верен>
1 0 1 Бит М2 не верен
1 1 0 Бит М1 не верен
1 1 1 Бит М4 не верен
<


/p> Описанная схема легко переносится на любое число n и М.

Число возможных кодовых комбинаций М помехоустойчивого кода делится на n классов, где N – число разрешенных кодов. Разделение на классы осуществляется так, чтобы в каждый класс вошел один разрешенный код и ближайшие к нему (по расстоянию Хэмминга) запрещенные коды. В процессе приема данных определяется, к какому классу принадлежит пришедший код. Если код принят с ошибкой, он заменяется ближайшим разрешенным кодом. При этом предполагается, что кратность ошибки не более qm.

Можно доказать, что для исправления ошибок с кратностью не более qmm (как правило, оно выбирается равным D = 2qm +1). В теории кодирования существуют следующие оценки максимального числа N n-разрядных кодов с расстоянием D.

d=1 n=2n
d=2 n=2n-1
d=3 n

2n /(1+n)
d=2q+1
В случае кода Хэмминга первые k разрядов используются в качестве информационных, причем

k= n – log(n+1),

откуда следует (логарифм по основанию 2), что k может принимать значения 0, 1, 4, 11, 26, 57 и т.д., это и определяет соответствующие коды Хэмминга (3,1); (7,4); (15,11); (31,26); (63,57) и т.д.

Циклические коды

Обобщением кодов Хэмминга являются циклические коды BCH (Bose-Chadhuri-Hocquenghem). Это коды с широким выбором длины и возможностей исправления ошибок. Циклические коды характеризуются полиномом g(x) степени n-k, g(x) = 1 + g1x + g2x2 + … + xn-k. g(x) называется порождающим многочленом циклического кода. Если многочлен g(x) n-k и является делителем многочлена xn + 1, то код C(g(x)) является линейным циклическим (n,k)-кодом. Число циклических n-разрядных кодов равно числу делителей многочлена xn + 1.

При кодировании слова все кодовые слова кратны g(x). g(x) определяется на основе сомножителей полинома xn +1 как:

xn +1 = g(x)h(x)

Например, если n=7 (x7+1), его сомножители (1 + x + x3)(1 + x + x2 + x4), а g(x) = 1+x + x3.

Чтобы представить сообщение h(x) в виде циклического кода, в котором можно указать постоянные места проверочных и информационных символов, нужно разделить многочлен xn-kh(x) на g(x) и прибавить остаток от деления к многочлену xn-kh(x). См. Л.Ф. Куликовский и В.В. Мотов, “Теоретические основы информационных процессов”. Москва “Высшая школа” 1987. Привлекательность циклических кодов заключается в простоте аппаратной реализации с использованием сдвиговых регистров.



Пусть общее число бит в блоке равно N, из них полезную информацию несут в себе K бит, тогда в случае ошибки, имеется возможность исправить m бит. Таблица 2.8.1 содержит зависимость m от N и K для кодов ВСН.

Таблица 2.8.1

Общее число бит N Число полезных бит М Число исправляемых бит m
31 26 1
21 2
16 3
63 57 1
51 2
45 3
127 120 1
113 2
106 3
Увеличивая разность N-M, можно не только нарастить число исправляемых бит m, но открыть возможность обнаружить множественные ошибки. В таблице 2.8.2 приведен процент обнаруживаемых множественных ошибок в зависимости от M и N-M.

Таблица 2.8.2

Число полезных бит М Число избыточных бит (n-m)
6 7 8
32 48% 74% 89%
40 36% 68% 84%
48 23% 62% 81%
Другой блочный метод предполагает “продольное и поперечное” контрольное суммирование предаваемого блока. Блок при этом представляется в виде N строк и M столбцов. Вычисляется биты четности для всех строк и всех столбцов, в результате получается два кода, соответственно длиной N и M бит. На принимающей стороне биты четности для строк и столбцов вычисляются повторно и сравниваются с присланными. При выявлении отличия в бите i кода битов четности строк и бите j – кода столбцов, позиция неверного бита оказывается определенной (i,j). Понятно, что если выявится два и более неверных битов в контрольных кодах строк и столбцов, задача коррекции становится неразрешимой. Уязвим этот метод и для двойных ошибок, когда сбой был, а контрольные коды остались корректными.

Применение кодов свертки позволяют уменьшить вероятность ошибок при обмене, даже если число ошибок при передаче блока данных больше 1.

Линейные блочные коды

Блочный код определяется, как набор возможных кодов, который получается из последовательности бит, составляющих сообщение. Например, если мы имеем К бит, то имеется 2К возможных сообщений и такое же число кодов, которые могут быть получены из этих сообщений. Набор этих кодов представляет собой блочный код. Линейные коды получаются в результате перемножения сообщения М на порождающую матрицу G[IA]. Каждой порождающей матрице ставится в соответствие матрица проверки четности (n-k)*n. Эта матрица позволяет исправлять ошибки в полученных сообщениях путем вычисления синдрома. Матрица проверки четности находится из матрицы идентичности i и транспонированной матрицы А. G[IA] ==> H[ATI].

  I A AT
[ZEBR_TAG_/table>

Если

Синдром полученного сообщения равен

S = [полученное сообщение]. [матрица проверки четности].

Если синдром содержит нули, ошибок нет, в противном случае сообщение доставлено с ошибкой. Если сообщение М соответствует М=2k, а k =3 высота матрицы, то можно записать восемь кодов:
<


/p>
Сообщения Кодовые вектора Вычисленные как
M1 = 000 V1 = 000000 M1.G
M2 = 001 V2 = 001101 M2.G
M3 = 010 V3 = 010011 M3. G
M4 = 100 V4 = 100110 M4. G
M5 = 011 V5 = 011110 M5.G
M6 = 101 V6 = 101011 M6 .G
M7 = 110 V7 = 110101 M7 .G
M8 = 111 V8 = 111000 M8 .G
Кодовые векторы для этих сообщений приведены во второй колонке. На основе этой информации генерируется таблица 2.8.3, которая называется стандартным массивом. Стандартный массив использует кодовые слова и добавляет к ним биты ошибок, чтобы получить неверные кодовые слова.

Таблица 2.8.3. Стандартный массив для кодов (6,3)

000000 001101 010011 100110 011110 101011 110101 111000
000001 001100 010010 100111 011111 101010 110100 111001
000010 001111 010001 100100 011100 101001 110111 111010
000100 001001 010111 100010 011010 101111 110001 111100
001000 000101 011011 101110 010110 100011 111101 110000
010000 011101 000011 110110 001110 111011 100101 101000
100000 101101 110011 000110 111110 001011 010101 011000
001001 000100 011010 101111 010111 100010 111100 011001
Предположим, что верхняя строка таблицы содержит истинные значения переданных кодов. Из таблицы 2.8.3 видно, что, если ошибки случаются в позициях, соответствующих битам кодов из левой колонки, можно определить истинное значение полученного кода. Для этого достаточно полученный код сложить с кодом в левой колонке посредством операции XOR.

Синдром равен произведению левой колонки (CL "coset leader") стандартного массива на транспонированную матрицу контроля четности HT.

Синдром = CL . HT Левая колонка стандартного массива
000 000000
001 000001
010 000010
100 000100
110 001000
101 010000
011 100000
111 001001
Чтобы преобразовать полученный код в правильный, нужно умножить полученный код на транспонированную матрицу проверки четности, с тем чтобы получить синдром. Полученное значение левой колонки стандартного массива добавляется (XOR!) к полученному коду, чтобы получить его истинное значение. Например, если мы получили 001100, умножаем этот код на HT:



этот результат указывает на место ошибки, истинное значение кода получается в результате операции XOR:



Смотри также

www.cs.ucl.ac.uk/staff/S.Bhatti/D51-notes/node33.html (Saleem Bhatti).



Содержание раздела