Протоколы Internet


Алгоритм шифрования RSA - часть 2


Теоретически можно предположить, что возможно выполнение операции f-1, не вычисляя p и q. Но в любом случае задача эта не проста и разработчики считают ее трудно факторизуемой.

Предположим, что мы имеем зашифрованный текст f(M) и исходный текст M, и мы хотим найти значения p и q. Нетрудно показать, что таких исходных данных для решения задачи недостаточно – надо знать все возможные значения Mi.

Проясним использование алгоритма RSA на конкретном примере. Выбираем два простые числа p=7; q=17 (на практике эти числа во много раз длиннее). В этом случае n = p*q будет равно 119. Теперь необходимо выбрать e, выбираем e=5. Следующий шаг связан с формированием числа d так, чтобы d*e=1 mod [(p-1)(q-1)]. d=77 (использован расширенный алгоритм Эвклида). d – секретный ключ, а e и n характеризуют открытый ключ. Пусть текст, который нам нужно зашифровать представляется M=19. С = Memod n. Получаем зашифрованный текст C=66. Этот “текст” может быть послан соответствующему адресату. Получатель дешифрует полученное сообщение, используя М= Cdmod n и C=66. В результате получается M=19.

На практике общедоступные ключи могут помещаться в специальную базу данных. При необходимости послать партнеру зашифрованное сообщение можно сделать сначала запрос его открытого ключа. Получив его, можно запустить программу шифрации, а результат ее работы послать адресату. На использовании общедоступных ключей базируется и так называемая электронная подпись, которая позволяет однозначно идентифицировать отправителя. Сходные средства могут применяться для предотвращения внесения каких-либо корректив в сообщение на пути от отправителя к получателю. Быстродействующие аппаратные 512-битовые модули могут обеспечить скорость шифрования на уровне 64 кбит в сек. Готовятся ИС, способные выполнять такие операции со скоростью 1 Мбайт/сек. Разумный выбор параметра e позволяет заметно ускорить реализацию алгоритма.




Начало  Назад  Вперед